
    	
	

	

    
    

        
        
    
        	
                
                    
                    DynamicDocs API

                

            
	
                
                     Dashboard
            
	
                
                     My LaTeX Templates 
            
	
                
                 JSON to PDF Templates
                
            
	
                
                 Excel to PDF Templates
                
            
	
                
                 LaTeX Templates
            
	
                
                 PDF API Documentation
                	
                        Getting Started
                    
	
                        Authentication Guide
                    
	
                        Compile Resource
                    
	
                        Template Settings
                    
	
                        Writing LaTeX Templates
                    
	
                        Merge JSON to PDF
                    
	
                        Creating Charts
                    
	
                        Consumption Options
                    
	
                        Security and Limitations
                    


            
	
                
                 Excel to PDF Add-in
                	
                        Documentation
                    
	
                        Download
                    


            
	
                
                 Pricing
            
	
                
                 Case Studies
            
	
                
                     Support
            


    



        
        

            
            
    
        
             
            
        

        	
                
                     Home
            
	
                
                     Blog
            
	
                
                     Sign in
              
	
                
                     Register
              



    



            
            

    
        Merge JSON to PDF

        	
                Home                
            
	
                DynamicDocs API
            
	
                Documentation
            
	
                Merge JSON to PDF
            


    





    
        
                            
                
                    
                        Content

                    

                    	Overview

	JSON to Tex to PDF Workflow


	R Packages

	TeX Live Distribution



                        	Examples of Merging JSON to PDF


	Include Strings

	Include Numerical Values

	Include Dates

	Include Logical Statements



                        	R Code in the Templates


	Include Custom Functions

	Include Tables

	Include Charts



                    
                
                
            

        
        
        
                            
                
                    
                        Overview

                    

                    
                    In this section, we explain the process of how to use JSON data and place dynamic content into the documents. Understanding this process allows users to create dynamic content with logical statements, dynamic tables and charts based on the JSON payload from the LaTeX templates.
                    
                
                
                
            

        

        
            
                
                    
                        JSON to Tex to PDF Workflow

                    

                    
                    DynamicDocs API incorporates R languarge to read the JSON data and places into R list of variables which is ready to use in the documents using functions from the knitr package. 
                    
          
                    
                    In other words before converting the tex file into PDF with LaTeX, DynamicDocs API implements the R layer where R code is executed. The following sections we will show examples of making content dynamic. We assume that the user has a basic knowledge of R.
         
                    
                        Available R Packages

                    
  
                    The following list of R packages are loaded and their functions are readily available in the templates:

                    	Package knitr - Provides a general-purpose tool for dynamic report generation in R using Literate Programming techniques. 
	Package base - Base R functions - This package contains the basic functions which let R function as a language: arithmetic, input/output, basic programming support, etc. Its contents are available through inheritance from any environment.
	Package stringi - Fast and Portable Character String Processing in R
	Package stringr - Simple, Consistent Wrappers for Common String Operations
	Package ggplot2 - Extra Themes, Scales and Geoms for 'ggplot2'
	Package ggthemes - Create Elegant Data Visualisations Using the Grammar of Graphics
	Package scales - Scale Functions for Visualization
	Package xts - Provide for uniform handling of R's different time-based data classes by extending zoo, maximizing native format information preservation and allowing for user level customization and extension, while simplifying cross-class interoperability.
	Package lubridate - Functions to work with date-times and time-spans: fast and user friendly parsing of date-time data, extraction and updating of components of a date-time (years, months, days, hours, minutes, and seconds), algebraic manipulation on date-time and time-span objects. 
	Package kableExtra - Build complex'LaTeX' tables using 'kable()' from 'knitr' and the piping syntax from 'magrittr'. This package simplifies the way to manipulate the 'LaTeX' codes generated by 'kable()' and allows users to construct complex tables and customize styles using a readable syntax.

                    
                    Note that due to AWS lambda limitations, the packages are restricted to the list above (apart from their dependencies which are also available).

                    
                        TeX Live Distribution

                    
  
                    TeX Live Distribution is the 

                

            

        

        
                            
                
                    
                        Examples of Merging JSON to PDF

                    

                    
                        The primary way to include JSON data is with the use of knitr package and specifically the use of Sexpr function in the templates. In this section we will provide exampls of using this function to include strings, numerical values, dates and logical statements. For further resources on the knitr package, visit the following sources:
                    
                     
                    	Knitr Home Page - The package home page provides documentation with detailed options and examples for the package.
	Knitr on Stackoverflow - Questions on stackoverflow with knitr tag
	Dynamic Documents with R and knitr - Book by Yihui Xie
	Knitr Github - Knitr Github Page


                    
                        Include Strings

                    

                    In this example we show how to use the Sexpr function and include JSON string into the document.

                    
                        	JSON
	TEX
	PDF 


                        
                            
                                
                                    
                                        
                                            {
  "stringObject": {
      "string": "DynamicDocs API is great for PDF generation"
  }
}                                            
                                            

                                        

                                    

                                

                            

                            
                                
                                    
                                        
                                            \documentclass[a4paper]{article}

\usepackage[top=1cm, bottom=1cm, left=1cm, right=1cm,]{geometry}

\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}

% Font setup
\usepackage[default,scale=0.95]{opensans}

\begin{document}

\Sexpr{params$stringObject$string}

\end{document}
                                            

                                        

                                    

                                

                            

                            
                                
                                    
                                        
                                            
                                        

                                    

                                

                            

                        

                    

                    Notice that to retrieve the string value params$stringObject$string was used. All JSON values are retrived in the same manner.

                    
                        Include Numerical Values

                    

                    In this example we show how apply an R format function to the numerical value and display the output in the document, again with Sexpr function.

                    
                        	JSON
	TEX
	PDF 


                        
                            
                                
                                    
                                        
                                            {
  "numericalObject": {
      "value": 12345.6789
  }
}                                         
                                            

                                        

                                    

                                

                            

                            
                                
                                    
                                        
                                            \documentclass[a4paper]{article}

\usepackage[top=1cm, bottom=1cm, left=1cm, right=1cm,]{geometry}

\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}

% Font setup
\usepackage[default,scale=0.95]{opensans}

\begin{document}

\Sexpr{format(params$numericalObject$value,nsmall=2)}

\end{document}
                                            

                                        

                                    

                                

                            

                            
                                
                                    
                                        
                                            
                                        

                                    

                                

                            

                            Notice that Sexpr function evaluates its content as if it was in R. In other words you can apply other R functions to the value as you see fit.

                        

                    

                    
                        Include Dates

                    

                    In this example we show how to convert JSON date and format it into the document.

                    
                        	JSON
	TEX
	PDF 


                        
                            
                                
                                    
                                        
                                            {
  "dateObject": {
      "date": "2022-12-05T12:45:34.75+02:00"
  }
}                                          
                                            

                                        

                                    

                                

                            

                            
                                
                                    
                                        
                                            \documentclass[a4paper]{article}

\usepackage[top=1cm, bottom=1cm, left=1cm, right=1cm,]{geometry}

\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}

% Font setup
\usepackage[default,scale=0.95]{opensans}

\begin{document}

\Sexpr{format(as.Date(params$dateObject$date),"%B %Y")}

\end{document}
                                            

                                        

                                    

                                

                            

                            
                                
                                    
                                        
                                            
                                        

                                    

                                

                            

                        

                    

                    
                        Include Logical Statements

                    

                    In this example we show how to dispay text based on an if statement using the data in the JSON payload.

                    
                        	JSON
	TEX
	PDF 


                        
                            
                                
                                    
                                        
                                            {
  "object": {
      "booleanTest": true,
      "a": "show this if booleanTest is TRUE",
      "b": "show this if booleanTest is FALSE"
  }
}                                          
                                            

                                        

                                    

                                

                            

                            
                                
                                    
                                        
                                            \documentclass[a4paper]{article}

\usepackage[top=1cm, bottom=1cm, left=1cm, right=1cm,]{geometry}

\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}

% Font setup
\usepackage[default,scale=0.95]{opensans}

\begin{document}

\Sexpr{if (params$object$booleanTest) params$object$a else params$object$b}

\end{document}
                                            

                                        

                                    

                                

                            

                            
                                
                                    
                                        
                                            
                                        

                                    

                                

                            

                        

                        Note that you can use the if statement with R syntax and JSON data to create dynamic content in your template.

                    

                
                
            

        

        
                            
                
                    
                        R Code in the Templates

                    

                    
                        The knitr package implements a coding architype known as Literate Programming. This feature combines code chunks (for computing) with LaTeX (pdf generation) in the same document. That is, the tex files can be injected with chunks of R code in order to run or perform more complex functions that need to be outputted in the PDF.  
                    

                    
                        The general structure of a LaTeX file, which starts with the document class, however chunks of R code can be embedded within the code. These chunks are defined between two elements: > and @, which define the beginning and end of a chunk respectively. These two elements comprise of functions and R code that can be used in the document.
                    
 
                    The following sections will show examples of using R code in the tex file to create custom functions and dynamic tables. For further information on using R code in the template file, refer to Knitr Package Home Page. 

                    
                        Include Custom Functions

                    

                    In this example we show how to write custom function and create a new variable which is then used in the template to output it content.

                    
                        	JSON
	TEX
	PDF 


                        
                            
                                
                                    
                                        
                                            {
  "stringObject": {
      "string": "we need to capitalize this text"
  }
}                                          
                                            

                                        

                                    

                                

                            

                            
                                
                                    
                                        
                                            \documentclass[a4paper]{article}

\usepackage[top=1cm, bottom=1cm, left=1cm, right=1cm,]{geometry}

\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}

% Font setup
\usepackage[default,scale=0.95]{opensans}

\begin{document}

<< RCode, cache=FALSE >>= 

    makeUpper 
                                        

                                    

                                

                            

                            
                                
                                    
                                        
                                            
                                        

                                    

                                

                            

                        

                    
                                       
                    
                        Include Tables

                    

                    In this example we show how to use the kable function and create dynamic tables based on JSON payload.

                    
                        	JSON
	TEX
	PDF 


                        
                            
                                
                                    
                                        
                                            {
  "tableData": [
      {
      "company": "Alfreds Futterkiste",
      "contact": "Maria Anders",
      "country": "Germany",
      "numberEmployers": 100
      },
      {
      "company": "Centro comercial Moctezuma",
      "contact": "Francisco Chang",
      "country": "Mexico",
      "numberEmployers": 50
      },
      {
      "company": "Island Trading",
      "contact": "Helen Bennetts",
      "country": "UK",
      "numberEmployers": 210
      },
      {
      "company": "Laughing Bacchus Winecellars",
      "contact": "Yoshi Tannamuri",
      "country": "Canada",
      "numberEmployers": 80
      },
      {
      "company": "Springbok Traders",
      "contact": "Kobus van de Merwe",
      "country": "South Africa",
      "numberEmployers": 25
      }
    ]
}                                         
                                            

                                        

                                    

                                

                            

                            
                                
                                    
                                        
                                            \documentclass[a4paper]{article}

\usepackage[top=1cm, bottom=1cm, left=1cm, right=1cm,]{geometry}

\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{array}
\usepackage{booktabs}
\pagestyle{empty}
\usepackage[table]{xcolor}

% Font setup
\usepackage[default,scale=0.95]{opensans}

\begin{document}

<< TableFormat, cache=FALSE >>= 

table %
            kable_styling(latex_options = "striped")

@

\Sexpr{table}

\hspace{5cm}

\end{document}
                                            

                                        

                                    

                                

                            

                            
                                
                                    
                                        
                                            
                                        

                                    

                                

                            

                        

                    

                    For further options on the kable function refer to the Package kableExtra reference manual and vignettes.
                   
                    
                        Include Charts

                    

                    Charts which depend on the data in the JSON can be created using the ggplot2 package. For some examples visit the following Creating Charts page.

                    

                    
                                                    
                            
                                Previous: Writing LaTeX Templates      
                            

                        

                        
                            
                                Next: Creating Charts  
                            

                        

                    
                                         
                
                
            

        
       
    








            
            
    
    	Terms of Service - Copyright Advicement Investment Services (Pty) Ltd © 2014 - 2024 
    





        

        

    

    

    
    
    




    
    


